Rao-Blackwellized particle filter for multiple target tracking
نویسندگان
چکیده
In this article we propose a new Rao-Blackwellized particle filtering based algorithm for tracking an unknown number of targets. The algorithm is based on formulating probabilistic stochastic process models for target states, data associations, and birth and death processes. The tracking of these stochastic processes is implemented using sequential Monte Carlo sampling or particle filtering, and the efficiency of the Monte Carlo sampling is improved by using Rao-Blackwellization.
منابع مشابه
Rao-Blackwellized Monte Carlo Data Association for Multiple Target Tracking
We propose a new Rao-Blackwellized sequential Monte Carlo method for tracking multiple targets in presence of clutter and false alarm measurements. The advantage of the new approach is that Rao-Blackwellization allows the estimation algorithm to be partitioned into single target tracking and data association sub-problems, where the single target tracking sub-problem can be solved by Kalman filt...
متن کاملRBMCDAbox - Matlab Toolbox of Rao-Blackwellized Data Association Particle Filters
In this paper we present a documentation for Matlab toolbox consisting of Rao-Blackwellized particle filtering based algorithms, which can be used in solving data association problems frequently occuring in the context of multiple target tracking. The provided algorithms can be used for fixed as well as unknown and time-varying number of targets. The mathematical background of the provided algo...
متن کاملRao-Blackwellized Resampling Particle Filter for Real-time Player Tracking in Sports
Tracking multiple targets with similiar appearance is a common task in computer vision applications, especially in sports games. We propose a Rao-Blackwellized Resampling Particle Filter (RBRPF) as an implementable real-time continuation of a state-of-the-art multi-target tracking method. Target configurations are tracked by sampling associations and solving single-target tracking problems by K...
متن کاملA Rao-Blackwellized Mixed State Particle Filter for Head Pose Tracking
This paper presents a Rao-Blackwellized mixed state particle filter for joint head tracking and pose estimation. Rao-Blackwellizing a particle filter consists of marginalizing some of the variables of the state space in order to exactly compute their posterior probability density function. Marginalizing variables reduces the dimension of the configuration space and makes the particle filter mor...
متن کاملA Rao-Blackwellized Mixed State Particle Filter for Head Pose Tracking in Meetings
This paper addresses the problem of head pose estimation in the context of meetings. More precisely, given a video of people involved in a meeting, the goal is to estimate the pose of people’s head with respect to the camera, which could ultimately translate into the estimation of the focusof-attention of people (who is looking at whom or what). To this end, we present a Rao-Blackwellized mixed...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Information Fusion
دوره 8 شماره
صفحات -
تاریخ انتشار 2007